Co-occurrence Matrix and Fractal Dimension for Image Segmentation

نویسنده

  • Beatriz Marron
چکیده

One of the most important tasks in image processing problem and machine vision is object recognition, and the success of many proposed methods relies on a suitable choice of algorithm for the segmentation of an image. This paper focuses on how to apply texture operators based on the concept of fractal dimension and cooccurence matrix, to the problem of object recognition and a new method based on fractal dimension is introduced. Several images, in which the result of the segmentation can be shown, are used to illustrate the use of each method and a comparative study of each operator is made.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image Processing Applications Based on Texture and Fractal Analysis

Texture analysis research attempts to solve two important kinds of problems: texture segmentation and texture classification. In some applications, textured image segmentation can be solved by classification of small regions obtained from image partition. Two classes of features are proposed in the decision theoretic recognition problem for textured image classification. The first class derives...

متن کامل

Biomedical Image Segmentation Based on Multiple Image Features

Image segmentation is a procedure that partitions an image into disjointing segments with each segment sharing similar properties such as intensity, color, boundary and texture. In general, three main types of image features are used to guide image segmentation, which are intensity or color, edge, and texture. In other words, image segmentation methods generally fall into three main categories:...

متن کامل

An Adaptive Segmentation Method Using Fractal Dimension and Wavelet Transform

In analyzing a signal, especially a non-stationary signal, it is often necessary the desired signal to be segmented into small epochs. Segmentation can be performed by splitting the signal at time instances where signal amplitude or frequency change. In this paper, the signal is initially decomposed into signals with different frequency bands using wavelet transform. Then, fractal dimension of ...

متن کامل

Adaptive Segmentation with Optimal Window Length Scheme using Fractal Dimension and Wavelet Transform

In many signal processing applications, such as EEG analysis, the non-stationary signal is often required to be segmented into small epochs. This is accomplished by drawing the boundaries of signal at time instances where its statistical characteristics, such as amplitude and/or frequency, change. In the proposed method, the original signal is initially decomposed into signals with different fr...

متن کامل

An Adaptive Segmentation Method Using Fractal Dimension and Wavelet Transform

In analyzing a signal, especially a non-stationary signal, it is often necessary the desired signal to be segmented into small epochs. Segmentation can be performed by splitting the signal at time instances where signal amplitude or frequency change. In this paper, the signal is initially decomposed into signals with different frequency bands using wavelet transform. Then, fractal dimension of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/0908.4310  شماره 

صفحات  -

تاریخ انتشار 2009